测光数据处理

黄样(中国科学院大学) huangyang@ucas.ac.cn 2023/06/13

目录

- □ 大规模巡天简史
- □ 准备知识(不完备)
- □ 探测器性能标定
- □ 天测与测光
- □ 流量定标

□ Pipeline in Python: all in all

人眼时代

1609 - 1850s

照相底片时代

1898 Pleiades negative, drying rack, and darkroom tray

1850s - 1980s

数字化时代

1980s – present

多波段星等

SDSS

大规模巡天简史

拍照片

拍动图

Survey the sky faster and faster

PS1

r < 22.8

1.8m, 7deg², *grizY*

拍电影

Realizing the Astro2020 Program: Pathways From Foundations to Frontiers

· Promote scientific literacy and engage the public

Worlds and Suns in Context

Priority Area: Pathways to Habitable Worlds

We are on a path to exploring worlds resembling Earth and answering the question: "Are we alone?" The task for the next decades will be finding the easiest of such planets to characterize, and then studying them in detail. searching for signatures of life.

系外行星及宜居性 宿主恒星活动性 系外行星生命信号

Priority Area: New Windows on the Dynamic Universe

The New Windows on the Dynamic Universe priority area involves using light in all its forms, gravitational waves, and neutrinos to study cosmic explosions on all scales and the mergers of compact objects

动态宇宙新窗口 多信使多波段 瞬变天体 致密天体

Priority Area: Unveiling the Drivers of Galaxy Growth

The priority area involves unveiling the drivers of 驱动星系生长 galaxy growth, focusing on processes affecting galactic scales

引力波探测获2017年 诺贝尔物理奖

->引力波天文学: 致密天体并合之电磁对应体

GW170817的电磁对应体观测 □光学发现:11小时后探测到←1米Swope巡天 □触发后随光学光谱:1天之后获取 □探测到后期光变和光谱可以由中子星重元素衰变解释, 但反应更关键物理的早期信息被丢失,因此无法区分最 核心追求的致密天体模型! □问题:需要五个小时内的极早期光变来区分模型!

特点:	要求:
天去覆盖: 单次曝光>1平方度	处理模式:全自动
数据量: GB->TB 每晚	实效性:数分钟模式(变源瞬变源)/离线模式
探测器: CCD/CMOS	精度要求: 1-3%/毫星等

大规模巡天简史

Volume: 数据量大

Variety: 种类繁多(图像、时序、不同层级的星表等)

Value: 我们想要的最有价值的信息

Velocity: 时效性(真正的挑战) -- 分钟量级

Veracity: 怎样在大海捞针下捞到针

What happened? What is happening? What will happen? What will it happen? What should we do? Why should I do it?

我们需要在几十台司天望远镜不停拍摄的同时作上述判断与决定

准备知识

Noises of CCD photometry

 N_* : the total number of photons collected from the object of interest

 n_{pix} : the total number of pixels under the object of interest; for ground based telescope, $n_{pix} =$

 $\frac{\pi r^2}{pixel \ size}$ (*r* given by the typical seeing)

 $N_{\rm sky}$: the total number of photons per pixel from the sky background

 $N_{\rm D}$: the total number of dark current electrons per pixel

 N_{RD}^2 : the total number of electrons per pixel resulting from the read noise

Those noises are determined by the **site station** and **camera properties** and can not be **reduced more** once the station and camera been chosen!

准备知识

一流台址

准备知识

一流台址

PWV

(%)

55

54

36

21

<2 mm

Deng et al. 2021

准备知识

一流台址

Ma et al. 2020

https://sites.astro.caltech.edu/~george/ay122/Bessel2005ARAA43p293.pdf

STANDARD PHOTOMETRIC SYSTEMS

Michael S. Bessell

Research School of Astronomy and Astrophysics, The Australian National University, Weston, ACT 2611, Australia; email: bessell@mso.anu.edu.au

UBVRI			W	ashing	ton		SDSS	5	H	lipparc	os	WFPC2		
	λeff	$\Delta\lambda$		λeff	$\Delta\lambda$		λeff	$\Delta\lambda$		λeff	$\Delta\lambda$		λeff	$\Delta\lambda$
U	3663	650	С	3982	1070	u'	3596	570	H_P	5170	2300	F336	3448	340
B	4361	890	М	5075	970	g'	4639	1280	B_T	4217	670	F439	4300	720
V	5448	840	T_1	6389	770	r'	6122	1150	V_T	5272	1000	F555	5323	1550
R	6407	1580	T_2	8051	1420	i′	7439	1230				F675	6667	1230
Ι	7980	1540				z'	8896	1070				F814	7872	1460

TABLE 1Wavelengths (Å) and widths (Å) of broad-band systems

准备知识

SUMMARY PERFORMANCE (Typical)

Number of pixels	9216 (H) × 9232 (V)
Pixel size	10 µm square
Image area	92.2 mm × 92.4 mm
Outputs	16
Package size	98.5 × 93.7 mm
Package format	Silicon carbide with two flexi connectors
Focal plane height, above base	20.0 mm
Connectors	Two 51-way micro-D
Flatness	20 µm (peak to valley)
Amplifier sensitivity	7.5 µV/e⁻
Read-out noise	4 e [−] at 0.5 MHz 2.5 e [−] at 50 kHz
Maximum pixel data rate	3 MHz
Charge storage (pixel full well)	90,000 e ⁻
Dark signal	4 e⁻/pixel/hour (at –100 °C)

CCD290-99 Sensor designed by e2v

XingLong Station:

Background: $V = 21.0 \text{ mag/srcsec}^2$

Atmospheric extinction: kV = 0.035 mag/airmass

Telescope efficiency: 40% (assumed)

Aperture: 1m in diameter

Pixel scale: 0.6 arcsec/pixel

Seeing: 1.5 arcsec

	DD silicon Astro Multi-2	Standard silicon Astro Multi-2	Pixel Response Non-Uniformity PRNU (1 σ)
Wavelength (nm)	Minimum QE (%)	Minimum QE (%)	Maximum PRNU (%)
350	30	30	-
400	75	75	3
500	75	75	-
650	80	80	3
900	50	25	5

Limiting magnitude? (5sigma; @1.2 airmass) @ 2s @ 20s @ 200s And which one dominates the error?

https://www.eso.org/sci/observing/tools/standards/spectra.html

Oke (1990) Spectrophotometric Standards

Oke (AJ, 99, 1621, 1990) has provided absolute spectral energy distributions covering the wavelength range 3200 to 9200Å in AB magnitudes for 25 stars. The measurements were made with the Double Beam Spectrograph of the **E**-Hale 5m telescope. The reduced magnitudes are tabulated at 1Å intervals from 3300 to 4700Å and at 2Å intervals from 4700 to 9200Å. Comparison of the fluxes with those determined elsewhere showed that Oke's absolute magnitudes are systematically brighter by 0.04 mag. The magnitudes and fluxes plotted have been corrected for this effect. Colina & Bohlin (AJ, 1931, 1994) tabulate the differences between the original Oke fluxes, in terms of synthesized B and V magnitudes, and Landolt photometry for each star individually. The AB magnitudes were converted to flux (ergs/cm/cm/s/A) using the formula ABMAG = -2.5 alog10(Fnu) - 48.59 (Hamuy et al., PASP, 104, 533, 1992), where Fnu is in ergs/cm/cm/s/Hz.

Cautionary Note:

These data have larger uncertainties than tabulated in the following spectral regions:

- below 3400Å (atmospheric and instrument transmission);
- 4000-4500Å (CCD flaws);
- 4650–4800Å (overlap between orders, dichroic cut);
- telluric A and B bands (around 7615 and 6875Å respectively);
- above about 8500Å (second-order contamination).

No.	Name	alpha (2000)) delta	Sp.	V	AB
				Туре		(5460A)
1	G158-100	00 33 54.3	-12 07 57	sdG	14.89	14.82
2	HZ 4	03 55 21.7	+09 47 19	DA4	14.52	14.47
3	G191B2B	05 05 30.6	+52 49 54	DAO	11.78	11.72
4	G193-74	07 53 27.4	+52 29 36	DC	15.70	15.58
5	BD+75d325	08 10 49.3	+74 57 57	05p	9.54	9.52

准备知识

望远镜空间分辨本领:

准备知识

准备知识

望远镜空间分辨本领:

衍射极限

大气湍流

探测器采样 (焦面比例尺)

准备知识

望远镜空间分辨本领:

衍射极限

大气湍流

探测器采样 (焦面比例尺)

测光数据处理纵览

SiTian imagE Processing pipeline (STEP)

CCD Cross-talk:

BASS CCD #1 Four amplifiers

Cross-talk effect: typically in the level of 1:1000 to 1:10000.

HDU	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	0	-23	-33	-30	1	2	2	2	1	-1	1	1	2	2	1	3
2	-17	0	-24	-23	1	1	2	3	1	0	1	1	2	3	3	3
3	-10	-8	0	-11	1	1	2	2	1	0	1	1	2	2	2	4
4	-11	-9	-11	0	2	-4	2	2	1	0	0	1	1	2	2	2
5	3	3	3	3	0	-33	-37	-27	2	-1	2	1	0	0	1	2
6	3	3	4	3	-10	0	-17	-14	3	2	4	3	1	1	1	2
7	3	3	3	3	-11	-14	0	-6	2	1	2	2	1	2	2	2
8	3	3	4	4	-9	-6	-5	0	1	3	4	2	0	1	1	1
9	3	2	3	2	1	1	2	2	0	-16	-23	-19	3	3	2	2
10	2	1	2	1	0	1	1	1	-31	0	-40	-32	2	2	2	2
11	3	2	2	1	0	-1	1	1	-25	-16	0	-17	2	2	1	2
12	3	2	3	2	1	1	2	2	-15	-11	-8	0	-2	1	2	1
13	4	3	4	3	-1	0	1	1	-9	0	1	3	0	-24	-26	-22
14	4	3	4	3	0	1	1	2	-9	1	1	-2	-24	0	-26	-22
15	4	4	5	4	1	1	1	2	-11	0	1	3	-13	-10	0	-5
16	5	5	5	5	-1	1	1	2	-7	-3	-1	0	-15	-14	-12	0

Note. The scale is 10⁻⁵.

Before

After

CCD RoN & Gain:

$$\sigma_{\rm ADU} = rac{{
m Readout\,noise}}{{
m Gain}}$$

$$\sigma_{\rm ADU} = \frac{\sqrt{\cdot Gain}}{Gain}$$

CCD RoN & Gain:

$$Gain = \frac{(\langle F1 \rangle + \langle F2 \rangle) - (\langle B1 \rangle + \langle B2 \rangle)}{\sigma_{F1-F2}^2 - \sigma_{B1-B2}^2}$$

Readout noise =
$$\frac{Gain \cdot \sigma_{B1-B2}}{\sqrt{2}}$$

探测器性能标定

Readout noise

20160207

探测器性能标定

Readout noise

20160204

Gain

20160207

Gain

20160204

Bias (X, t)

Overscan(s)

Overscan(s)

Overscan(s)

Flat: small (QE) + large (dust, vignetting) spatial variations

Flat: small (QE) + large (dust, vignetting) spatial variations

Dome: S*L*I

Sky: S (low SNR)*L

Flat: small (QE) + large (dust, vignetting) spatial variations

Dome/Smooth(Dome/Sky) Flat

Wavelength (& positional)-dependent instrumental response function

Figure 1. Schematic drawing of the DECal system.

Marshall et al. 2013

Flat-fielding strategy

Marshall et al. 2013

"Star flats" (Manfroid 1995, 1996)

Multi-visits (including different bands): comparison or sigma-clipping

Single visit: median filter (2-3 s/frame)

Cosmic rays

Hough transformation (Hough 1962)

$$y = a \cdot x + b$$

$$r = x \cdot \cos \theta + y \cdot \sin \theta \Leftrightarrow$$
$$y = -\frac{\cos \theta}{\sin \theta} \cdot x + \frac{r}{\sin \theta}$$

Satellite lines

天测与测光

References:

Da Costa, 1992, ASP Conf Ser 23 Stetson, 1987, PASP, 99, 191 Stetson, 1990, PASP, 102, 932

天测与测光

天测与测光

Center Sky background Aperture radius

天测与测光

Selecting the right aperture

- Too small: not enough to include the whole stellar light
- Too big: too many "noise pixels"

天测与测光

Howell 1989

天测与测光

天测与测光

Aperture correction & growth curves

If stellar PSF Gaussian distribution:

0.85 FWHM = 2 sigma = 95.45% 1.27 FWHM = 3 sigma = 99.73% 1.70 FWHM = 4 sigma = 99.99% 2.12 FWHM = 5 sigma = ~100%

- Select a relative small aperture size (~1.5 FWHM)
- Construct growth curves using isolated and bright stars in the field
- Apply aperture corrections

BASS 64222 天区 r波段 RA:06:14:35; Dec:56:15:44 gl:158.01138; gb:17.461039

观测时间:20160203 163s 曝光

观测时间:20160203 212s 曝光

天测与测光

Scamp

Group #1: detections

First solution: Run SExtractor of reduced image with initial WCS solution from pointing model from the telescope

Scamp

First solution: Run SExtractor of reduced image with initial WCS solution from pointing model from the telescope

天测与测光

pixel scale

Scamp

Scamp 64222B

64222A

sigma (RA) ~ 22 mas sigma (Dec) ~ 24 mas

sigma (RA) ~ 20 mas sigma (Dec) ~ 22 mas

Scamp

64222 A v.s. B

天测与测光

64222 A

天测与测光

Aperture correction:

SExtractor + PSFEx

天测与测光

64222 A versus B

天测与测光

64222 A versus B

天测与测光

Compared to Gaia G

天测与测光

Compared to Gaia G

天测与测光

Compared to Gaia G
天测与测光

SExtractor + PSFEx

Compared to Gaia G

天测与测光

SExtractor + PSFEx

		•	•														
	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠
	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠
	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠
	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠
	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠
		٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠
	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	٠	٠	•	٠	٠	٠	٠
٠	٠	٠	٠	٠	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠
	٠	٠	٠	٠		٠	٠	٠	٠	٠	٠	٠	٠	٠		٠	٠
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠		٠	•
•	٠	٠	٠	٠	•	٠	٠	٠	•	٠	٠	٠	٠	٠	٠	٠	٠
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠		٠			٠

SExtractor + PSFEx

天测与测光

ID	<pre>L> help,cc,/st;</pre>	r				
**	Structure <19	09208>, 58	tags, length=5376,	data	length=5362,	refs=1:
	NUMBER	LONG	1			
	FLUX_APER FLOAT		393.838			
	FLUXERR_APER FLOAT		58.7346			
	MAG_APER FLOAT		Array[25]			
	MAGERR_APER FLOAT		Array[25]			
	FLUX_AUTO	FLOAT	1286.83			
	FLUXERR_AUTO	FLOAT	306.742			
	MAG_AUTO	FLOAT	22.2262			
	MAGERR_AUTO	FLOAT	0.258870			
	MAG_PETRO	FLOAT	22.2262			
	MAGERR_PETRO	FLOAT	0.258870			
	SNR_WIN	FLOAT	8.77429			
	KRON_RADIUS	FLOAT	3.50000			
	BACKGROUND	FLOAT	-1.15/63			
	FLUX_MAX	FLUAT	185.181			
	ISUAREA_IMAGE	LUNG	19			
	ISUAREAF_IMAG	E LUNG	39			
	X_IMAGE	FLUAT	56/1./0			
	Y_IMAGE	FLUAT	269.411			
	ALPHA_J2000	DOORLE	94.699654			
:						
5						
5						
ļ						
ļ.						
ļ.						
ļ						
:						
:						

DELTA 12000		56 (12610
A TMAGE	FLOAT	1 70247
B IMAGE	FLOAT	1 37093
THETA IMAGE	FLOAT	-10,0369
XWIN IMAGE		5671,6857
YWIN IMAGE		269 47892
ALPHAWTN J2000		94,699639
DELTAWIN .12000		56.413617
AWIN IMAGE	FLOAT	1.04540
BWIN IMAGE	FLOAT	0.563749
THETAWIN IMAGE	FLOAT	3,29667
ERRAWIN IMAGE	FLOAT	0.217656
ERRBWIN IMAGE	FLOAT	0.214979
ERRTHETAWIN IMA	GE	
	FLOAT	7,22742
MU MAX	FLOAT	22,6163
FLAGS	INT	0
FLAGS WEIGHT	INT	0
FWHM IMAGE	FLOAT	4,83339
FWHM_WORLD	FLOAT	0.000609545
ELONGATION	FLOAT	1.24184
ELLIPTICITY	FLOAT	0.194745
CLASS_STAR	FLOAT	0.834779
VIGNET	FLOAT	Array[35, 35]
FLUX_RADIUS	FLOAT	1.52044
FWHMPSF_IMAGE	FLOAT	2.25000
FWHMPSF_WORLD	FLOAT	0.000283750
XPSF_IMAGE	DOUBLE	5671.6660
YPSF_IMAGE	DOUBLE	269.47564
XPSF_WORLD	DOUBLE	56.413615
YPSF_WORLD	DOUBLE	94.699640
ALPHAPSF_J2000	DOUBLE	94.699640
DELTAPSF_J2000	DOUBLE	56.413615
FLUX_PSF	FLOAT	1658.84
FLUXERR_PSF	FLOAT	197.511
MAG_PSF	FLOAT	21.9505
MAGERR_PSF	FLOAT	0.129305
NITER_PSF	INT	0
CHI2_PSF	FLOAT	1.18686e-09

 $f_{ADU} = \kappa f$

f: the flux of an object at earth (above the atmosphere) f_{ADU} : the detected instrumental flux κ depends on the exposure time, detector efficiency, filter responses, the telescope optical system, the optical path through the atmosphere, the SED of the objects in question

$$m_{\mathrm{ADU}} = m - 2.5 \log_{10} (\kappa)$$

$$-2.5\log_{10}(\kappa) = a(i,j;t) + k(t)x + f(i,j;t) + \dots$$

 $f_{ADU} = \kappa f$

f: the flux of an object at earth (above the atmosphere) f_{ADU} : the detected instrumental flux κ depends on the exposure time, detector efficiency, filter responses, the telescope optical system, the optical path through the atmosphere, the SED of the objects in question

$$m_{\mathrm{ADU}} = m - 2.5 \log_{10} (\kappa)$$

$$-2.5\log_{10}(\kappa) = a(i,j;t) + k(t)x + f(i,j;t) + \dots$$

The optical response of the telescope and detectors

 $f_{ADU} = \kappa f$

f: the flux of an object at earth (above the atmosphere) f_{ADU} : the detected instrumental flux κ depends on the exposure time, detector efficiency, filter responses, the telescope optical system, the optical path through the atmosphere, the SED of the objects in question

$$m_{ADU} = m - 2.5 \log_{10} (\kappa)$$
$$-2.5 \log_{10} (\kappa) = a(i,j;t) + k(t)x + f(i,j;t) + \dots$$

Atmospheric extinction

 $f_{ADU} = \kappa f$

f: the flux of an object at earth (above the atmosphere) f_{ADU} : the detected instrumental flux κ depends on the exposure time, detector efficiency, filter responses, the telescope optical system, the optical path through the atmosphere, the SED of the objects in question

$$m_{ADU} = m - 2.5 \log_{10} (\kappa)$$
$$-2.5 \log_{10} (\kappa) = a(i,j;t) + k(t)x + f(i,j;t) + \dots$$

Detector flat fields

Traditional methods: standard stars

Landolt standards (Landolt 1983; 1992): provide magnitudes accurate to < 1% in the *UBVRI* bands for 500 stars in the *V* magnitude range 11.5-16.

Stetson standards (Stetson 2000; 2005): extend Landolt's work to fainter magnitudes and provided the community with ~1-2% accurate magnitudes in the *BVRI* bands for ~15,000 stars in the magnitude range V < 20.

Ivezic standards (2007): present 1.01 million nonvariable unresolved objects from the equatorial stripe 82 with <1% accurate magnitudes in ugriz bands in the *V* band magnitude range 14-22.

流量定标

Relative calibrations:

- Ubercalibration (Ivezic et al. 2007; Padmanabhan et al. 2008)
- Stellar locus/color regression (SLR/SCR; High et al. 2009; Yuan et al. 2015)
 - Purely based on photometry (High et al. 2009)
 - Spectroscopy+photometry (Yuan et al. 2015)

